1,904 research outputs found

    Particle Gibbs with Ancestor Sampling

    Full text link
    Particle Markov chain Monte Carlo (PMCMC) is a systematic way of combining the two main tools used for Monte Carlo statistical inference: sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). We present a novel PMCMC algorithm that we refer to as particle Gibbs with ancestor sampling (PGAS). PGAS provides the data analyst with an off-the-shelf class of Markov kernels that can be used to simulate the typically high-dimensional and highly autocorrelated state trajectory in a state-space model. The ancestor sampling procedure enables fast mixing of the PGAS kernel even when using seemingly few particles in the underlying SMC sampler. This is important as it can significantly reduce the computational burden that is typically associated with using SMC. PGAS is conceptually similar to the existing PG with backward simulation (PGBS) procedure. Instead of using separate forward and backward sweeps as in PGBS, however, we achieve the same effect in a single forward sweep. This makes PGAS well suited for addressing inference problems not only in state-space models, but also in models with more complex dependencies, such as non-Markovian, Bayesian nonparametric, and general probabilistic graphical models

    Photon-Number Squeezing in Circuit Quantum Electrodynamics

    Get PDF
    A superconducting single-electron transistor (SSET) coupled to an anharmonic oscillator, e.g., a Josephson junction-L-C circuit, can drive the latter to a nonequilibrium photon number state. By biasing the SSET in a regime where the current is carried by a combination of inelastic quasiparticle tunneling and coherent Cooper-pair tunneling (Josephson quasiparticle cycle), cooling of the oscillator as well as a laser like enhancement of the photon number can be achieved. Here we show, that the cut-off in the quasiparticle tunneling rate due to the superconducting gap, in combination with the anharmonicity of the oscillator, may create strongly squeezed photon number distributions. For low dissipation in the oscillator nearly pure Fock states can be produced.Comment: 5 pages, 5 figure

    Properties of the energy landscape of network models for covalent glasses

    Full text link
    We investigate the energy landscape of two dimensional network models for covalent glasses by means of the lid algorithm. For three different particle densities and for a range of network sizes, we exhaustively analyse many configuration space regions enclosing deep-lying energy minima. We extract the local densities of states and of minima, and the number of states and minima accessible below a certain energy barrier, the 'lid'. These quantities show on average a close to exponential growth as a function of their respective arguments. We calculate the configurational entropy for these pockets of states and find that the excess specific heat exhibits a peak at a critical temperature associated with the exponential growth in the local density of states, a feature of the specific heat also observed in real glasses at the glass transition.Comment: RevTeX, 19 pages, 7 figure

    Measuring current by counting electrons in a nanowire quantum dot

    Full text link
    We measure current by counting single electrons tunneling through an InAs nanowire quantum dot. The charge detector is realized by fabricating a quantum point contact in close vicinity to the nanowire. The results based on electron counting compare well to a direct measurements of the quantum dot current, when taking the finite bandwidth of the detector into account. The ability to detect single electrons also opens up possibilities for manipulating and detecting individual spins in nanowire quantum dots

    Detecting THz current fluctuations in a quantum point contact using a nanowire quantum dot

    Full text link
    We use a nanowire quantum dot to probe high-frequency current fluctuations in a nearby quantum point contact. The fluctuations drive charge transitions in the quantum dot, which are measured in real-time with single-electron detection techniques. The quantum point contact (GaAs) and the quantum dot (InAs) are fabricated in different material systems, which indicates that the interactions are mediated by photons rather than phonons. The large energy scales of the nanowire quantum dot allow radiation detection in the long-wavelength infrared regime

    Zero-bias anomaly in cotunneling transport through quantum-dot spin valves

    Full text link
    We predict a new zero-bias anomaly in the differential conductance through a quantum dot coupled to two ferromagnetic leads with antiparallel magnetization. The anomaly differs in origin and properties from other anomalies in transport through quantum dots, such as the Kondo effect. It occurs in Coulomb-blockade valleys with an unpaired dot electron. It is a consequence of the interplay of single- and double-barrier cotunneling processes and their effect on the spin accumulation in the dot. The anomaly becomes significantly modified when a magnetic field is applied.Comment: 4 pages, 3 figure

    Sequential Generation of Matrix-Product States in Cavity QED

    Get PDF
    We study the sequential generation of entangled photonic and atomic multi-qubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multi-qubit states sequentially generated at the cavity output of a single-photon source and atomic multi-qubit states generated by their sequential interaction with the same cavity mode.Comment: 11 page

    The role of damping for the driven anharmonic quantum oscillator

    Get PDF
    For the model of a linearly driven quantum anharmonic oscillator, the role of damping is investigated. We compare the position of the stable points in phase space obtained from a classical analysis to the result of a quantum mechanical analysis. The solution of the full master equation shows that the stable points behave qualitatively similar to the classical solution but with small modifications. Both the quantum effects and additional effects of temperature can be described by renormalizing the damping.Comment: 4 pages, 2 figures; submitted to "Journal of Physics: Conference Series
    • …
    corecore